3,267 research outputs found

    Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit

    Get PDF
    We discuss how to generate entangled coherent states of four \textrm{microwave} resonators \textrm{(a.k.a. cavities)} coupled by a superconducting qubit. We also show \textrm{that} a GHZ state of four superconducting qubits embedded in four different resonators \textrm{can be created with this scheme}. In principle, \textrm{the proposed method} can be extended to create an entangled coherent state of nn resonators and to prepare a Greenberger-Horne-Zeilinger (GHZ) state of nn qubits distributed over nn cavities in a quantum network. In addition, it is noted that four resonators coupled by a coupler qubit may be used as a basic circuit block to build a two-dimensional quantum network, which is useful for scalable quantum information processing.Comment: 13 pages, 7 figure

    Entangling two oscillators with arbitrary asymmetric initial states

    Get PDF
    A Hamiltonian is presented, which can be used to convert any asymmetric state φaϕb|\varphi \rangle_{a}|\phi \rangle_{b} of two oscillators aa and bb into an entangled state. Furthermore, with this Hamiltonian and local operations only, two oscillators, initially in any asymmetric initial states, can be entangled with a third oscillator. The prepared entangled states can be engineered with an arbitrary degree of entanglement. A discussion on the realization of this Hamiltonian is given. Numerical simulations show that, with current circuit QED technology, it is feasible to generate high-fidelity entangled states of two microwave optical fields, such as entangled coherent states, entangled squeezed states, entangled coherent-squeezed states, and entangled cat states. Our finding opens a new avenue for creating not only two-color or three-color entanglement of light but also wave-like or particle-like entanglement or novel wave-like and particle-like hybrid entanglement.Comment: 8 pages, 2 figure

    Single-step transfer or exchange of multipartite quantum entanglement with minimum resources

    Get PDF
    The transfer or exchange of multipartite quantum states is critical to the realization of large-scale quantum information processing and quantum communication. A challenging question in this context is: What is the minimum resource required and how to simultaneously transfer or exchange multipartite quantum entanglement between two sets of qubits. Finding the answer to these questions is of great importance to quantum information science. In this work, we demonstrate that by using a single quantum two-level system - the simplest quantum object - as a coupler arbitrary multipartite quantum states (either entangled or separable) can be transferred or exchanged simultaneously between two sets of qubits. Our findings offer the potential to significantly reduce the resources needed to construct and operate large-scale quantum information networks consisting of many multi-qubit registers, memory cells, and processing units.Comment: 45 pages, 7 figure

    Entangling two oscillators with arbitrary asymmetric initial states

    Get PDF
    We present a Hamiltonian which can be used to convert any asymmetric state |φ⟩a|ϕ⟩b of two oscillators a and b into an entangled state via a single-step operation. Furthermore, with this Hamiltonian and only local operations, two oscillators, initially in any asymmetric initial states, can be entangled with a third oscillator. The prepared entangled states can be engineered with an arbitrary degree of entanglement. A discussion of the realization of this Hamiltonian is given. Numerical simulations show that, with current circuit QED technology, it is feasible to generate high-fidelity entangled states of two microwave optical fields, such as entangled coherent states, entangled squeezed states, entangled coherent-squeezed states, and entangled cat states. Our finding opens a avenue for creating not only wavelike or particlelike entanglement but also wavelike and particlelike hybrid entanglemen

    Monolayer Molybdenum Disulfide Nanoribbons with High Optical Anisotropy

    Full text link
    Two-dimensional Molybdenum Disulfide (MoS2) has shown promising prospects for the next generation electronics and optoelectronics devices. The monolayer MoS2 can be patterned into quasi-one-dimensional anisotropic MoS2 nanoribbons (MNRs), in which theoretical calculations have predicted novel properties. However, little work has been carried out in the experimental exploration of MNRs with a width of less than 20 nm where the geometrical confinement can lead to interesting phenomenon. Here, we prepared MNRs with width between 5 nm to 15 nm by direct helium ion beam milling. High optical anisotropy of these MNRs is revealed by the systematic study of optical contrast and Raman spectroscopy. The Raman modes in MNRs show strong polarization dependence. Besides that the E' and A'1 peaks are broadened by the phonon-confinement effect, the modes corresponding to singularities of vibrational density of states are activated by edges. The peculiar polarization behavior of Raman modes can be explained by the anisotropy of light absorption in MNRs, which is evidenced by the polarized optical contrast. The study opens the possibility to explore quasione-dimensional materials with high optical anisotropy from isotropic 2D family of transition metal dichalcogenides

    The Spatial Correlation Analysis of China's Regional R&D Technical Efficiency

    Get PDF
    The paper uses SFA technique to measure the regional R&D technical efficiency in China during 1999~2008, applies spatial measurement economics technique to analyze the correlation and convergence characteristics, and builds a spatial convergency model to analyze the spatial convergency characteristics of the regional R&D technical efficiency. The analysis result shows that there appears positive correlation characteristic and an absolute convergence trend on the regional R&D technical efficiency in China, and the effect of spatial geographical factors on the regional R&D technical efficiency is significant

    Calculation and experimental verification of force-magnetic coupling model of magnetised rail based on density functional theory

    Get PDF
    Metal magnetic memory (MMM) is a widely used non-destructive electromagnetic detection technology. However, the analysis of its underlying principle is still insufficient. The mechanical and magnetic coupling model is a reasonable standpoint from which to study the principle of MMM. In this paper, a mechanical and magnetic coupling model of steel material is established based on density functional theory (DFT) using the CASTEP first-principles analysis software. In order to simulate the practical working environment, the residual magnetism in the rail is assumed to change with the stress on the rail. By applying different stresses to the model, the relationship between the atomic magnetic moment, the lattice constant and stress is explored, as well as the causes of magnetic signals in the stress concentration zone. It is revealed that the atomic magnetic moment and the crystal volume decrease with the increase in compressive stress. The magnetic signal on the surface of the magnetised metal component decreases with the increase in compressive stress, while the tensile stress shows the opposite tendency. Generally speaking, the change in atomic magnetic moment and crystal volume caused by lattice distortion under stress can be seen as the fundamental reason for the change in magnetic signal on the surface of the magnetised metal. The bending experiment of the rail shows that the normal magnetic field decreases with the increase in compressive stress in the stress concentration zone. The conclusion is verified by experiments

    PROPERTIES OF GAS AND CHAR FROM MICROWAVE PYROLYSIS OF PINE SAWDUST

    Get PDF
    Pine sawdust pyrolysis was carried out respectively using microwave and conventional electrical heating at different temperatures in order to understand the properties of pyrolytic products from microwave pyrolysis of biomass. Less char material was obtained by microwave pyrolysis compared to conventional heating at the same temperature. While comparing the components of the pyrolytic gases, it was revealed that the microwave pyrolysis gas usually had higher H2 and CO contents and lower CH4 and CO2 contents than those obtained by conventional pyrolysis at the same temperature. The texture analysis results of the microwave pyrolysis chars showed that the chars would melt and the pores would shrink at high temperatures, and hence, the specific surface areas of the chars decreased with increasing temperature. Similarly, the reactivity of the char was remarkably reduced when the microwave pyrolysis temperature exceeded 600°C
    corecore